Pozbycie się zużytego sprzętu elektrycznego i elektronicznego (stosowane w krajach Unii Europejskiej i w pozostałych krajach europejskich majacych własne systemy zbiórki).

Symbol ten umieszczony na produkcie lub jego opakowaniu (zgodnie z Ustawa z dnia 29.07.2005 r. O zużytym sprzęcie elektrycznym i elektronicznym stanowi, że produkt ten nie może być traktowany jako odpad komunalny Powinien być przekazany do odpowiedniego punktu zbiórki zużytego sprzętu elektrycznego i elektronicznego. Poprzez zapewnienie odpowiedniego składowania, pomożesz zapobiec negatywnym skutkom grożącym środowisku naturalnemu i ludzkiemu zdrowiu. Recykling pomaga zachować zasoby naturalne. Aby uzyskać szczegółowe informacje na temat recyklingu tego produktu, informacje o utworzonym systemie odbierania i zbierania zużytego sprzętu elektrycznego i elektronicznego oraz wykaz zakładów przetwarzania, należy skontaktować się z naszym biurem lub naszymi dystrybutorami.

VIESMANN

SOLAR 100 C

Instrukcja obsługi

Regulator solarny przeznaczony jest do sterowania pompa układu solarnego (oraz drugim opcjonalnym urzadzeniem) w celu zapewnienia ekonomicznego procesu ładowania zasobnika c.w.u.

Regulator mierzac temperatury kolektora i zasobnika c.w.u., włacza i wyłacza pompe solarna ładujaca zasobnik c.w.u. Pompa zostaje załaczona, gdy temperatura zasobnika c.w.u. jest niższa od nastawionej przez użytkownika, a kolektor ma temperaturę odpowiednio wyższa od temperatury mierzonej w danej chwili w zasobnikuc.w.u.

■ sterowanie pompa solarną ładujacą zasobnik c.w.u. w zależności od temperatury kolektora słonecznego
■ licznik energii

- podgrzewanie zasobnika c.w.u. do temperatury żadanej przez użytkownika

■ dodatkowe wyjście sterujące w zależności od własnego wyboru (pompa cyrkulacyjna c.w.u., grzałka lub pompa drugiego zasobnika c.w.u.)
■ wybór jednego z trzech programów pracy pompy cyrkulacyjnej c.w.u.

- możliwość stworzenia własnego programu pracy pompy cyrkulacyjnej c.w.u. w zależności od indywidualnych potrzeb i preferencji
■ czytelne menui intuicyjna obsługa

1 Opis elementów regulatora

1. Przycisk powrotu o jeden poziom do tyłu - COFNIJ / aktywacja URLOP
2. Przycisk zmiany / zmniejszania nastawy
3. Przycisk zmiany / zwiększania nastawy
4. Przycisk wejścia w kolejne poziomy menu - DO PRZODU
5. Dioda sygnalizująca błąd odczytu temperatury lub uszkodzony czujnik
6. Ekran roboczy
7. Dioda sygnalizujaca pracę pompy solarnej
8. Dioda sygnalizująca pracę domyślnej pompy cyrkulacyjnej c.w.u. (lub opcjonalnie innego podłączonego urządzenia)
9. Gniazdo bezpiecznika 2,5 A
10. Gniazdo bezpiecznika $2,5 \mathrm{~A}$
11. Wyłącznik sieciowy

Opis ekranu roboczego

W przypadku, gdy na czujniku pompy cyrkulacyjnej c.w.u. / pompy ładującej drugi zasobnik c.w.u. wystąpi bład odczytu temperatury, na wyświetlaczu migać będzie symbol CC. Jednocześnie świecić się będzie dioda 1 - (patrz punkt 1. Opis elementów regulatora) oraz będzie wydawany sygnał dźwiękowy.

Uwaga: W przypadku błędu odczytu lub uszkodzenia czujnika pompy cyrkulacyjnej c.w.u., pompa będzie pracować przez cały czas.

Uwaga: Z uwagi na możliwość wystapienia okresowo w zasobniku temperatury wody powyżej $50^{\circ} \mathrm{C}$ należy przewidzieć zamontowanie termostatycznego zaworu mieszajacego c.w.u.

Charakterystyka temperaturowa czujnika Pt 1000

Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Rezyst. (Ω)
-30	882
-25	902
-20	922
-15	941
-10	961
-5	980
0	1000
5	1019
10	1039
15	1058
20	1078
25	1097
30	1116

Temp. $\left({ }^{\circ} \mathrm{C}\right)$	
35	Rezyst. (Ω)
40	1136
45	1155
50	1174
55	1194
60	1233
65	1251
70	1270
75	1289
80	1308
85	1328
90	1347
95	1366

Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Rezyst. (Ω)
100	1385
105	1403
110	1422
115	1411
120	1460
125	1479
130	1498
135	1517
140	1535
145	154
150	1573
155	1591
160	1610

Charakterystyka temperaturowa czujnika KTY 81-210

Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Rezyst. (Ω)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Rezyst. (Ω)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Rezyst. (Ω)
-30	1247	20	1922	60	2597
-20	1367	25	2000	70	2785
-10	1495	30	2080	80	2980
0	1630	40	2245	90	3182
10	1772	50	2417	100	3392

Zerowanie licznika

Parametr pozwalający skasować dotychczasowe wskazanie licznika. Dokonuje się tego za pomoca przycisku "+".

14 Nastawy fabryczne

W trakcie pracy regulatora, można powrócić do nastaw fabrycznych. W tym celu należy wejść w podmenu NAST. FABRYCZNE, a wybór zatwierdzić przyciskiem "+".

> < Hed.Febr.

$$
\begin{aligned}
& \text { Nest: Fbr: }
\end{aligned}
$$

Informacje dodatkowe

W przypadku, gdy na czujniku kolektora lub zasobnika c.w.u. wystapi bład odczytu temperatury, na wyświetlaczu migać będzie komunikat BŁAD - będzie on wyświetlany zamiast temperatury odpowiednio dla kolektora lub zasobnika c.w.u. Jednocześnie świecić się będzie dioda $\mathbb{1}$ - (patrz punkt 1. Opis elementów regulatora) oraz będzie wydawany sygnał dźwiękowy.

Zalecenia instalacyjne

\square Regulator przeznaczony jest do pracy z układami solarnymi
\square Instalowanie regulatora należy powierzyć tylko osobie uprawnionej.

- Regulator podłaczać tylko do gniazda ze stykiem ochronnym.
- Wymagane jest, aby instalacja solarna posiadała własne zabezpieczenia przed nadmiernym wzrostem temperatury spowodowanym np. nieprawidłowa pracą regulatora lub urzadzeńz nim współpracujacych.
- Regulator należy umieścić w miejscu uniemożliwiającym jego nagrzewanie do temperatury wyższej niż $40^{\circ} \mathrm{C}$.
- Regulator nie może być narażony na zalanie wodą oraz na warunki powodujace skraplanie się pary wodnej (np. gwattowne zmiany temperatury otoczenia).
- Urządzenie powinno być instalowane i obsługiwane zgodnie z opisem montażu i zasadami postępowania z urzadzeniami elektrycznymi.
- Przepalenie bezpieczników wskutek złego podłaczenia przewodów lub spięcia winstalacji elektrycznej nie stanowi podstaw do naprawy gwarancyjnej.
\square Przed uruchomieniem regulatora sprawdzić poprawność wszystkich podłaczeń elektrycznych.
- Regulator zabezpieczony jest dwoma bezpiecznikami 2,5A.
. Podłączenia przewodów zasilających oraz wymiany bezpieczników należy dokonać przy wyłạczonym zasilaniu regulatora (wtyczka zasilająca regulator musi być wyjęta z gniazda sieciowego). Podłączenie urządzeń i wymiana bezpieczników przy włączonej wtyczce sieciowej regulatora grozi porażeniem prądem elektrycznym.
- Przewody przyłączeniowe tego regulatora moga być wymienione wyłącznie przez producenta lub jego autoryzowany zakład serwisowy
Zabrania się użytkowania uszkodzonego regulatora.

Schemat podłaczenia elektrycznego

1. Zdjać tylną część obudowy regulatora.
2. Przeciagnać kable zasilające i kable czujników przez dławiki w tylnej części obudowy.
3. Podłączyć końcówki przewodów do odpowiednich zacisków listwy zasilającej umieszczonej wewnatrz regulatora.
4. Zamknać obie części obudowy regulatora i zabezpieczyć obudowę dwoma dołączonymi wkrętami
5. Zamontować czujniki kolektora i zasobnika c.w.u. (oraz opcjonalnie czujnik urządzenia dodatkowego)
6. Włożyć wtyczkę kabla zasilajacego regulator do gniazda 230 V .
7. Włączyć regulator wyłącznikiem sieciowym.

Uwaga: Gdy po właczeniu regulatora wyłacznikiem sieciowym, ekran wyświetlacza nic nie wyświetla należy sprawdzić:

- poprawność podłączenia przewodów do sieci elektrycznej - stan bezpieczników.

Uwaga: Bezpieczniki wymieniać zawsze przy urządzeniu odłączonym od sieci elektrycznej.

Pierwsze uruchomienie

Podczas pierwszego uruchomienia na wyświetlaczu pojawi się pulsujący zegar oraz dzień tygodnia

Aby ustawić prawidłową godzinę i datę, naciskamy przycisk []. a następnie klawiszami" "", "- nastawiamy żadany dzien tygodnia. Wybor akceptujemy

Schemat montażu czujników - opcja Zas.

Schemat montażu czujników - opcja T2

Uwaga: Czujnik mierzacy temperature powrotu płynu solarnego montować na przewodzie tuż przy zasobniku c.w.u.

Maksymalny przepływ

Parametr pozwalajacy określić maksymalny możliwy przepływ płynu solarnego przez instalację. Wielkość ta powinna być zgodna z charakterystyka techniczna układu solarnego lub ze wskazaniem przepływomierza. Zmianę dokonuje się przyciskami "+", "-". Zakres zmian: od 0,1 $1 / \mathrm{min}$ do 20,0 $1 / \mathrm{min}$
Mexprefun

Płyn solarny

Parametr pozwalający określić rodzaj płynu solarnego, wykorzystanego winstalacji solarnej. Zmianę dokonuje się przyciskami "+", "-"

> P4y

Plen Soleme

 Ergolid EveFhm 5olams Erolid $\mathrm{H}-\mathrm{D}$

Fanmety

Wł. / Wył. licznika energii

Parametr powodujący włączenie lub wyłączenie licznika energii. Zmianę dokonuje się przyciskami "+", "-". Zakres zmian: tak/nie

$$
\begin{aligned}
& \text { Luchenergit } \\
& \text { Whernenergit } \\
& \text { Waronenie }
\end{aligned}
$$

Wybór czujnika

Parametr pozwalający określić, czy czujnik zasobnika c.w.u. będzie jednocześnie czujnikiem powrotu instalacji solarnej (niezbędnym przy pomiarze energii). Zmianę dokonuje się przyciskami "+", "-". Zakres zmian: Zas/T2.

Wybór opcji Zas powoduje, że czujnik zasobnika c.w.u. wykorzystywany jest również do pomiaru temperatury powrotu płynu solarnego a tym samym przy obliczaniu zużycia energii - patrz obok Schemat montażu czujników - opcja Zas. W te sytuacji do dyspozycji użytkownika pozostaje dodatkowy czujnik T2, którego można wykorzystać do sterowania dodatkowym urzadzeniem (pompą cyrkulacyjna, pompa ładujacą drugi zasobnik c.w.u.).

Wybór opcji T2 powoduje, że pomiar temperatury powrotu płynu solarnego dokonywany jest przez czujnik dodatkowy a pomiar temperatury w zasobniku c.w.u. przez niezależny czujnik zasobnika - patrz obok Schemat montażu czujników opcja T2.

Identycznie postępujemy ustawiając aktualna godzinę, a następnie minuty

$$
\text { Cow } 14.36
$$

Po zakończeniu wprowadzania nastaw i dwukrotnym naciśnięciu klawisza \leftrightarrows, następuje przejście do ekranu głównego.
Gy: $24^{\circ} \quad 1486$

Zmiana ustawienia temperatury wody w zasobniku c.w.u.

W każdym momencie pracy regulatora, istnieje możliwość zmiany nastawy żądanej temperatury w zasobniku c.w.u. Należy jej dokonać z poziomu ekranu głównego, przyciskami "+", "-"

		Hin
"10,		nurn'tin

W czasie zmiany, na wyświetlaczu pojawi się mrugający symbol NAST. wraz z liczba, wskazującą na aktualnie ustawioną temperaturę w zasobniku c.w.u.

Po dokonaniu nastawy, regulator automatycznie powraca do wyświetlenia temperatury kolektora i zasobnika c.w.u.

Uwaga: W trosce o środowisko naturalne, wprowadzona została funkcja ograniczająca pobór energii elektrycznej przez regulator. Polega ona na wygaszeniu ekranu po 3 minutach bezczynności - naciśnięcie dowolnego przycisku powoduje ponowne podświetlenie.

Opis funkcji menu

Menu służy do ustawienia poszczególnych parametrów regulatora w zakresie pracy pompy solarnej, licznika energii, parametrów zasobnika c.w.u. itp. Przejście pomiędzy poszczególnymi pozycjami menu następuje poprzez naciśnięcie przycisków "+" , "-" ; wejście w ustawienia konkretnej pozycji następuje zawsze poprzez naciśnięcie klawisza

Praca ręczna

Funkcja PRACA RĘCZNA umożliwia wymuszenie załączenia pompy solarnej oraz urzadzenia podłaczonego do WYJŚCIE 2 (domyślnie jest to pompa cyrkulacyjna c.w.u.).

Naciśnięcie klawisza powoduje przejście do wprowadzenia odpowiednich ustawień.
Pome Pomez

Klawisz "+" włacza / wyłącza pompę solarna. Wymuszenie pracy włacza zegar odliczający czas do jej automatycznego wyłączenia (domyślnie 30 minut).

Klawisz "-" włącza / wyłaczza pracę drugiego urządzenia (o ile jest ono podłączone do regulatora), celem sprawdzenia poprawności jego działania.
Stan pracy obu urzadzeń sygnalizowany jest odpowiednimi diodami (patrz punkt 1. Opis elementów regulatora). Klawisz \quad powoduje zakończenie "ręcznej" pracy w/w urządzeń i przejście regulatora w stan pracy automatycznej.

Temperatury
Okno informujace o aktualnie mierzonych temperaturach na podłaczonych czujnikach.

Licznik energii
Okno informujące o ilości pozyskanej energii.

Dodatkowe WYJŚCIE

W tym miejscu następuje zdefiniowanie urzadzenia podłaczonego pod dodatkowe wyjście (pompa cyrkulacyjna c.w.u. , grzałka lub pompa ładujaca drugi zasobnik c.w.u.). Ustawienie na pozycję WYŁACZ powoduje brak obsługi przez regulator dodatkowego wyjscia.

Whecie
 Fomes Cetrul.

> Wrgene

$$
\text { brei } \mathrm{l} \text { cienik }
$$

Wesce

LICZNIK ENERGII

Menu LICZNIKENERGII umożliwia:

1. Dokonanie szczegółowych nastaw odpowiedzialnych za prawidłowe liczenie energii pozyskanej do podgrzewania ciepłej wody użytkowej.
2. Skasowanie wskazania licznika energii.

Przy właczonej modulacji, pompa solarna stopniowo zmniejsza swoje obroty, gdy temperatura w zasobniku c.w.u. zbliża się do temperatury zadanej (i odwrotnie). Zakres zmian: tak (modulacja włączona)/ nie (modulacja wyłączona).

Pome Solmme Modit: Zeobitek

Pomes Soleme Modit: Zeobinie

Skok MODULACJI NR 1

Parametr określający, o ile stopni następuje zwiększenie lub zmniejszenie mocy pompy solarnej o kolejne 10% jej zakresu, określonego w punkcie 12. PARAMETRY - Maksymalna moc pompy solarnej oraz w punkcie 12. PARAMETRY - Minimalna moc pracy pompy solarnej. Zakres zmian: od $1^{\circ} \mathrm{C}$ do $5^{\circ} \mathrm{C}$.

Pome: 5olmas Skok modul: 0°

Ochrona przeciw-zamrożeniowa POMPY SOLARNEJ

Parametr określający temperaturę na kolektorze, poniżej której włacczy się pompa solarna aby nie dopuścić do zamrożenia płynu solarnego w instalacji. Zakres zmian od $-00^{\circ} \mathrm{C}$ do $-35^{\circ} \mathrm{C}$

Pomes Soleme

Cyrkulacja

Parametr określający minimalną różnicę pomiędzy temperatura wody w zasobniku c.w.u., a temperatura wody w przewodzie cyrkulacyjnym aby pompa cyrkulacyjna została właczona. Zakres zmian: od $02^{\circ} \mathrm{C}$ do $20^{\circ} \mathrm{C}$.

\& Lionnenergis

Livnenmei
 bl .2 CWh

Poniższe okno informuje o wyłączonym liczniku energii.
Lienn Eneria
".".n ".n. "."."

Parametry

Funkcja PARAMETRY pozwala na ustawienie parametrów pracy pompy solarnej w zależności od temperatury w zasobniku c.w.u. oraz parametrów pracy drugiego urządzenia (pompy cyrkulacyjnej c.w.u., grzałki lub pompy ładującej drugi zasobnik c.w.u.). Naciśnięcie klawisza \apowoduje przejście do wprowadzania odpowiednich ustawień.

Parametr KOL-ZASOB określa, minimalna różnicę temperatury pomiędzy kolektorem a zasobnikiem c.w.u. dla włączenia pompy solarnej. Wartość tej różnicy zmieniana jest przyciskami "+", "-". Np. parametr 10° oznacza, że jeżeli zasobnik c.w.u. ma temperature $40^{\circ} \mathrm{C}$ to pompa solarna załaczy sie, gdy kolektor osiagnie temperaturę wyższąod $50^{\circ} \mathrm{C}$. Zakres zmian: od $1^{\circ} \mathrm{C}$ do $50^{\circ} \mathrm{C}$.

$$
\text { Pargety } 10^{\circ}
$$

Naciśnięcie klawisza powoduje przejście do nastaw drugiego urządzenia.

Uwaga: Treść nastaw drugiego urzadzenia uzależniona jest od rodzaju urzadzenia, podłączonego na wyjściu dodatkowym (WYJSCIE 2) OUTPUT 2) i wskazanego w MENU SERWISOWYM - patrz punkt 12. PARAMETRY - dodatkowe wyjście.

Parametr CYRKUL umożliwia właczenie / wyłączenie pracy pompy cyrkulacyjnej c.w.u. , zmiana następuje poprzez naciśnięcie klawiszy "+", "-".

$$
\begin{gathered}
\text { Pametye } \\
\text { cuma }
\end{gathered}
$$

Naciśnięcie klawisza
powoduje przejście do kolejnej nastawy.
Parametr T.Cyrk określa różnice temperatury wody pomiędzy zasobnikiem c.w.u. a przewodem cyrkulacji c.w.u., konieczną dla włączenia pompy cyrkulacyjnej c.w.u. Zakres nastaw $2{ }^{\circ} \mathrm{C}$ do $20^{\circ} \mathrm{C}$. Więcej o programach - patrz punkt 7. Opis funkcji menu-Timer.

> Pametre
> Tumat

Uwaga: W momencie, gdy licznik energii jest włączony oraz jako czujnik wybrana jest opcja T2 - możliwość zmiany parametru T.Cyrk zostaje automatycznie zablokowana, a pompa cyrkulacyjna będzie pracować wg T.Cyrk: WYŁACZONE - pompa będzie mogła pracować wg programu TIMER - patrz punkt 7. Opis funkcji menu - Timer.

Parametry - grzałka

Okno umożliwiające ustalenie warunku włączania się grzałki. Dokonuje się go przyciskami "+", "-".

Ustawienie parametru NIGDY powoduje całkowite wyłaczenie pracy grzałki.

> Peremetrege

Ustawienie parametru ZAWSZE powoduje właczenie grzałki za każdym razem, gdy temperatura w zasobniku c.w.u. spadnie o wartość ustawionej histerezy - patrz punkt 12. PARAMETRY-histereza pracy zasobnika.

$$
\begin{aligned}
& \text { Pammetme } \\
& \operatorname{traxa} 2 \mathrm{Em}=
\end{aligned}
$$

Parametr określajacy czas pracy pompy solarnej w trybie PRACY RECCZNEJ. Zakres zmian: od 1 min do 99 min .
Pare Fgame

Maksymalna moc POMPY SOLARNEJ

Parametr określający maksymalną moc, z jaką pracować ma pompa solarna. Zakres zmian: od 10\% do 100\%.
Pope melpres

Minimalna moc POMPY SOLARNEJ

Parametr określajacy minimalną moc, z jaką pracować ma pompa solarna. Zakres zmian: od 10\% do 100\%.

> Pape Eolpher

Modulacja nr 1 POMPY SOLARNE

Parametr powodujacy właczenie lub wyłaczenie modulacji pompy solarnej w zakresie zwiększającej się różnicy pomiędzy temperaturą na kolektorze a temperaturą wasobniku c.w.u. Zakres zmian:tak/nie.

> Ponfe 5ulane Modkulzertak

> Pome 5oleme
> Modrol -qunne

Histereza pracy ZASOBNIKA c.w.u.
Parametr określający liczbę stopni Celsjusza, o jaką musi obniżyć się temperatura w zasobniku poniżej ustawionej, aby włączyła się pompa solarna (pod warunkiem spełnienia różnicy Kol-Zasob). Zmianę dokonuje się przyciskami "+", "-". Zakres zmian: od $2^{\circ} \mathrm{C}$ do $9^{\circ} \mathrm{C}$.

Zeobnik Histereze be

Uwaga: Warunkiem takiej pracy jest wyłaczenie modulacji nr 2 - patrz punkt 12. PARAMETRY - Modulacja nr 2 POMPY SOLARNEJ.

Ochrona KOLEKTORA

Parametr pozwalajacy właczyć lub wyłaczyć funkcję ochrony kolektora. Zmianę dokonuje się przyciskami " + ", "-". Zakres zmian: tak/nie.
Kolektor: Ge

Kletor. Whrone anie

Ochrona kolektora polega na właczaniu się pompy solarnej w sytuacji, gdy temperatura na kolektorze wzrośnie powyżej maksymalnej dopuszczalnej, ustawionej w punkcie12. PARAMETRY - Maksymalna temperatura KOLEKTORA.

Maksymalna temperatura KOLEKTORA
Parametr pozwalający określić maksymalna dopuszczalną temperaturę na kolektorze. Zmianę dokonuje się przyciskami "+", "-". Zakres zmian: od $100^{\circ} \mathrm{C}$ do $250^{\circ} \mathrm{C}$.

$$
\text { Wexterter } 125
$$

Po jej przekroczeniu może włączać się pompa solarna, w celu schłodzenia płyt kolektora. Warunkiem jej właczania się jest ustawienie parametru Ochrona KOLEKTORA na tak.

Ustawienie parametru ZIM.KOL powoduje włączenie się grzałki w sytuacjach, gdy pompa solarna nie pracuje z powodu zbyt małej różnicy temperatur mierzonych pomiędzy kolektorem a zasobnikiem c.w.u. Ustawianie różnicy temperatur pomiędzy kolektorem a zasobnikiem c.w.u., wymaganej dla uruchomienia pompy solarnej patrz punkt 6. Opis funkcji menu - Parametry.

Prometre
 Gratkerimkol

Parametry - drugi zasobnik c.w.u.
Okno umożliwiające zablokowanie bądź odblokowanie pracy pompy ładującej drugi zasobnik c.w.u. Odpowiednie ustawienie dokonuje się przyciskami "+" , "-".

> Peonqutrecz

Parmetre
 Zabn2"ulac.

Naciśnięcie klawisza powoduje przejście do kolejnej nastawy.
Parametr ZAS1-ZAS2 określa minimalną różnicę temperatur mierzonych, jaka musi wystapić pomiędzy zasobnikiem c.w.u. głównym a pomocniczym, aby pompa ładujaca c.w.u. drugi zasobnik c.w.u. pracowała. Wartość tej różnicy zmieniana jest przyciskami "+", "-". Zakres zmian: od $2^{\circ} \mathrm{C}$ do $20^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { Paremetre } \\
& 2 \pm 1-2 \pm 2 \pi \quad 15
\end{aligned}
$$

1Uwaga: W momencie, gdy licznik energii jest włączony oraz jako czujnik wybrana jest opcja T2 - możliwość zmian parametrów drugiego zasobnika zostaje automatycznie zablokowana, a pompa tadujaca drugi zasobnik nie będzie się uruchamiała; więcej o wyborze czujnika - patrz punkt 13. LICZNIK ENERGII - Wybór czujnika.

Jezyk

Funkcja JĘZYK umożliwia wybór języka MENU (polski, angielski, niemiecki, czeski).

Tesk

Naciśnięcie klawisza powoduje przejście do wprowadzenia odpowiednich ustawień. Odpowiednie ustawienie dokonuje się przyciskami "+", "-".
Tequa

MENU Serwisowe

Funkcja MENU SERWISOWE wprowadza regulator w rozszerzone menu nastaw; dostępna tylko dla Instalatora.

MEN Seruisoue:

Aby wejść do MENU SERWISOWEGO, należy nacisnąć przycisk
; regulat zażąda wpisania kodu dostępu.

> WHE Ferisobe

Przyciskami "+", "-" ustawić kod dostępu i zatwierdzić przyciskiem
W tym momencie regulator znajdzie się w podmenu PARAMETRY; przejście do kolejnej pozycji podmenu czyli NASTAWY FABRYCZNE nasteepuje poprzez naciśnięcie przycisku "+" lub "-" i zatwierdzenie wyboru przyciskiem

Więcej informacji o parametrach ustawianych w MENU SERWISOWYM - patrz punkt 12. PARAMETRY.

Zegar

Funkcja ZEGAR umożliwia zmianę ustawionej godziny oraz dnia tygodnia; opisana w punkcie 5. Pierwsze uruchomienie.

Wejście do MENU SERWISOWEGO

Wejście do MENU SERWISOWEGO z poziomu ekranu głównego.

		'
' … '…		

1. Nacisnąć przycisk , a następnie kilka razy przycisk "+" do momentu ukazania się na ekranie informacji <MENU Serwisowe>.

MEH Semimoue>

2. Nacisnać przycisk ; regulator zażąda wpisania kodu dostępu.

MEN Semisoue

Podej Kod:bl
3. Przyciskami "+","-" ustawić kod dostępu izatwierdzić przyciskiem

W tym momencie regulator znajdzie się w podmenu PARAMETRY; przejście do kolejnej pozycji podmenu czyli LICZNIK ENERGII lub NASTAWY FABRYCZNE następuje poprzez naciśnięcie przycisku "+" lub "-" i zatwierdzenie wyboru przyciskiem

PARAMETRY

Menu PARAMETRY umożliwia dokonanie szczegółowych nastaw odpowiedzialnych za funkcjonowanie poszczególnych elementów instalacji solarnej.

MENU SERWISOWE - informacje ogólne
MENU SERWISOWE służy do ustawiania szczegółowych parametrów pracy m.in. kolektora, zasobnika c.w.u. i pomp

Poniższy schemat przedstawia układ MENU SERWISOWEGO.

Timer

Funkcja TIMER steruje czasem pracy pompy cyrkulacyjnej c.w.u.

Naciśnięcie klawisza powoduje przejście do ustawienia włączenia / wyłączenia funkcji TIMER - zmianę dokonuje się klawiszami "+", "-". Zakres zmian: tak/nie.

Kolejne naciśnięcie klawisza powoduje przejście do wyboru jednego z czterech trybów pracy pompy cyrkulacyjnej c.w.u. (rodzina, praca, senior, własny) - zmianę dokonuje się klawiszami "+",-".

Parametry dostepnych programów

program rodzina	
ndz	$07: 00-22: 00$
pon	$05: 30-22: 00$
wto	$05: 30-22: 00$
sro	$05: 30-22: 00$
czw	$05: 30-22: 00$
pia	$05: 30-22: 00$
sob	$05: 30-22: 00$

rogram praca

ndz
pon 06:00-08:00, 16:00-22:00 wto 06:00-08:00, 16:00-22:00 sro 06:00-08:00, 16:00-22:00 czw 06:00-08:00, 16:00-22:00 pia 06:00-08:00, 15:00-23:00 sob 07:00-23:30

program senior	
ndz	$05: 30-22: 00$
pon	$05: 30-22: 00$
wto	$05: 30-22: 00$
sro	$05: 30-22: 00$
czw	$05: 30-22: 00$
pia	$05: 30-22: 00$
sob	$05: 30-22: 00$

Wybór programu WŁASNY umożliwia stworzenie indywidualnego cyklu pracy pompy cyrkulacyjnej c.w.u. - dla każdego dnia tygodnia możliwe jest ustawienie dwóch przedziałów czasowych, w których pompa cyrkulacyjna c.w.u. będzie włączona.

Timen
 Provilens

Zmiany należy dokonać klawiszami "+" , "-", akceptując każde ustawienie klawiszem n

$$
\begin{array}{ll}
\text { Hez } & \text { whbgige }
\end{array}
$$

Ustawienie parametrów wł / wył na "-----" oznacza, że w danym okresie czasowym godzina włączenia i wyłączenia pompy cyrkulacyjnej c.w.u. nie została ustawiona.

No	(1)
T2	W:

Uwaga:
Cykle pracy pompy cyrkulacyjnej c.w.u. w zależności od ustawień:
a) Timer T.Cyrk
wyłaczony wyłączony
Pompa cyrkulacyjna c.w.u. pracuje cały czas.
b) Timer
wyłaczony
właczony
ompa cyrkulacyjna c.w.u. pracuje jedynie w zależności od minimalnej różnicy temperatury pomiędzy temperaturą wody w zasobniku c.w.u. a temperatura wody w przewodzie cyrkulacyjnym c.w.u. Zasil-Powr - patrz punkt 12. PARAMETRY - cyrkulacja - niezależnie od zakresów czasowych Timer'a. Funkcja jest dostępna po zamontowaniu czujnika temperatury cyrkulacji c.w.u. (OPCJA)
c) Timer T.Cyrk właczony wyłączony
Pompa cyrkulacyjna c.w.u. pracuje wg wybranego programu czasowego. niezależnie od różnicy temperatur Zasil-Powr.
d) Timer
włączony
T.Cyrk włączony

Pompa cyrkulacyjna c.w.u. pracuje w zakresach czasowych Timer'a, pod warunkiem, że występuje minimalna różnica temperatur Zasil-Powr.

Funkcja schładzania zasobnika c.w.u. - URLOP
Regulator włącza pompę solarną w momencie, gdy kolektor jest chłodniejszy niż woda w zasobniku c.w.u. (najczęściej w nocy) - daje to możliwość przyjęcia przez zasobnik kolejnej porcji ciepła następnego dnia.

Funkcja ta ma za zadanie chronić kolektor i zasobnik c.w.u. przed przegrzaniem w okresach braku poboru ciepłej wody z zasobnika c.w.u.

Funkcja ta zostaje aktywowana (oraz później wyłączona) poprzez naciśnięcie przez ponad 4 sekundy klawisza \leftrightarrows. W czasie, gdy funkcja ta jest aktywna, na wyświetlaczu widnieje litera "U" (URLOP).
Funkcja jest aktywna od godziny $19^{\circ \circ}$ do godziny $6^{\circ \circ}$.

Dane techniczne

Znamionowe napięcie zasilania
230 V, 50 Hz
Znamionowa moc obciażenia
275 VA
Wilgotność względna powietrza
$\leq 95 \%$
Stopień ochrony obudowy
IP 40
Klasa izolacj
Wymiary regulatora
$250 \times 153 \times 68 \mathrm{~mm}$
Temperatura otoczenia od $0{ }^{\circ} \mathrm{C}$ do $+40^{\circ} \mathrm{C}$
$2 \times 2,5 \mathrm{~A}$

